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By Warren A. Tucker

SUMMARY

A theoretical analysis, based on the linearized equation for
supersonic flow, was made of the characteristics of triangular-tip
control surfaces on thin triangular wings. By restricting the analysis
to the case for which the Mach lines from the wing apex lie behind the
leading edge, a simplified treatment was made possible in that the
results of previous work on the 1lift of triangular wings could be used
to derive simple expressions for the 1i1ft effectiveness, pitching
moment, rolling-moment effectiveness, and hinge moment due to control
deflection. An expression was also obtained for the hinge moment due
to angle of attack. Comparisons were made with the results for the
two-dimenslonal case.

The ratio of 1ift effectiveness to the hinge moment which
resulted from control deflection was equal to the corresponding two-
dimensional retio for the same ratio of flap ares to wing area.

Again for equal ratios of flap area to wing area and for a
flap chord one-half the wing chord, the rate of roll per hinge-moment
coefficient due to control deflection was twice as large for the
present configuration as for the two-dimensioneal case. Thils §if-
ference was directly a result of the difference in damping coefficients
between the two cases.

The-values of hinge-moment coefficilent due to angle of attack
were found to be high when compared with either the hinge-moment
coefficient due to control deflection or with the two-dimensional
hinge-moment coefficlient due to angle of attack. The appreciable
balancing effect thus indicated would materially reduce the stick
force in a steady roll and would also have to be taken Iinto account
in the determination of the stick-free longitudinal stablility if the
present arrangement were used as a horizontal tail.
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INTRODUCTION

There 1s considerable interest in the use of wings having
triangular plan forms for flight at supersonic speeds. Much work
has been done on the 11ft and drag characteristics of such wings
(references 1 to 5). Investigation of the 1ift and hinge-moment
characteristics of control surfaces which might be used on tri-
angular wings was consldered desirable. Several such control surfaces
have been suggested; the present paper treats control surfaces which
are located at the tips of the wing and which have plan forms
goometrically simlilar to the plan form of the wing.

The present analysis is restricted to the case in which the Mach
lines from the apex of the wing lie behind the leading edge. Because
of this restriction, the results of reference 2 could be used to
obtain simple expressions for the 1ift effectiveness, rolling-moment
effectiveness, pitching moment, and hinge moment due to control
deflection. An expression was also obtained for the hinge moment
due to angle of attack.

Because the analysis of reference 2, which forms the basis for
the present paper, was made by use of ~bhe linearized egquations of motion,
the present results are valld only within the usual limits of the
linearized theory. Also, the effects of viscosity have been neglected.
In this regard, some preliminary experimental results on a flapped
alrfoll have indicated that a fully developed boundary layer may
reduce the effective angle of flap deflection.

SYMBOLS
b maximum wing span
be trailing-edge spen of one flap
bp' hinge-line span of one flap
c wing root chord
cy wing local chord
—~ o [10/2 -
c wing mean aerodynamlc chord s 312 ay =S¢
0

Cp maximum flap chord in free-stream direction
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Cp flap root—-mean-square chord perpendicular to hinge
line = cp 8in €

\3

c 11ft coefficient ( LALt
Com pitching-moment coefficient about wing aerodynamic
center Pitching moment
aSc
Cq rolling-moment coefficient (Rolliqu;bmoment>
Cy, hinge-moment coefficient —E
bl T2
g Cp
P - Po
CP . rressure coefficient _q_
3
= C 2 -
Fl = —3 - C (C Cf)
3
= C
Y

3
= 3)
63 = 4= - >3
i
H hinge moment of one flap
M free-streem Mach number
n=tanu

tan €
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P pressure on one surface; rolling velocity
D5 free-stream prlessure
P lifting pressure on flep
q free-stream dynamic pressure <_%V2)
R perpendicular dlstance from hinge line of one flap to
opposite leading edge (see fig. 6)
S wing area
Sg area of two flaps
p=tent
tan €
£ = 1 - 2(%)
v free-stream velocity
w disturbance velocity in z-direction (dV)
X,y Cartesian coordinates parallel and normal, respectively,

to free-stream direction with origin at wing apex

Ie distance from wing center line to flap center line
o angle of attack
ag 11t effectiveness (CLS/CLQ)
B = MZ - 1
e} angle of flap deflectlon about hinge line
€ wing-semiapex angle
C = tan'l L
X

M Mach angle Qcan'l %)



NACA TN No. 1600

p free-stream density
v = n2 - 2
1 - 42
¢x disturbance veloclty in x-direction
Subscripts:
a partial derivatlve ogccoefficient with respect to «a
= L

example: CL(I, = 'ga—

o] partial derlvative of coefficlent with respect to B
(éxcept when used in QS)
CL partial derivative of coefficient with respect to Cp
8
o two-dimensional case

All angles are 1n radlans unless otherwlse speclfied.

ANALYSTS

Lift Bffectliveness

The control-surface configuratlon under investigation is shown
in flgure 1. Thers i1s no change in pressure over the main surfacs
of the wing when the flaps are deflected as long as the Mach lines
lie behind the leading edge. The 1ift produced by a given flap
deflection can thersfore be found by regarding each flap as an
igolated triangular wing. Had the restriction not been imposed
that the Mach lines l1ie behind the leading edge, then not only would
congsideration of the effect of the flap on the wing have been .
necessary, but, in addition, the upwash sbout the outside edge of
the flap would have had tq be taken into account. With the present
restriction, the center of pressure on the deflected flap is always
at the center of flap area, which greatly simplifies the analysis.

For a small flsp deflection & about the hinge line, the
corresponding engle of attack of the flap to the free stream can
saslly be shown to be O sin €. From reference 2, the 1lift coeffi-
cient (based on total wing area S) caused by a flap deflection B
may then be shown to be
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Cr, = 4% sin € Ei— _ (1)

B 5]

From the geometry of the configuration,

2
S _ 2(_f)
S c

thereforse,

c 88 sin € (°f S
L= B c

2
or. . 8s8ine (Fﬁi) (2)
Ls = B c

It is common practice to define the 1lift effectliveness of a control
surface as ag, which may be considered as the ratio of the 1ift

coefficlent produced by a unlt flap deflection to the 1i1ft coefficient
produced by a unlt angle.of attack of the entire wing. Fram
reference 2, the 1ift coefficient produced by & unit angle of

attack is

and

o, =7 (3)

The 1ift effectlveness is therefore

Cr,
ag = o B _ o sine <}—:) (%)
L

C

Values of ag are glven in flgure 2. Note that at T? = 0.5 the

inboard ends of the trailing edges of the two flaps meet at the
center line of the wing; therefore, this is the largest flap chord
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reatlo that cen be used with this scheme. At € = 90° the wing
reduces to a straight line; consequently, this valus of ¢ represents
a limiting case rather than a physically possible configuration.

At this point the corresponding 1ift paramesters may be con-
veniently gilven for a two-dimenslonal wing with a constant-chord
flap. For the two-dimensional case, the following equations from
reference 6 may be given

Crg_= 2% - (5)
and
Cry_= (8
therefore,
a5 = % -(), (7

A direct comparison of to is not particularly enlightening.
o o5 _

Tn a later sectlon of the paper ( "Discussion and Concluding Remarks'),
a more definitive comparison, involving hinge moments, 1s mads.

Pitching Moment

When the flap is deflected, the angle of attack being heid
constant, the resultant 1ift on the flap usually gives rise to a
pltching moment. This effect 1s of importance in stability work, and
its magnitude may be evalusted 1f the fact 1s remembered that the
center of pressure on the deflected flap is at two-third.s of the
flap chord from the flap apex.

The pitching moment is foumd ebout the aerodynamic center of
the main wing, which is at two-thirds of the wing chord from the wing
apex. The pitching-moment coefficient is based on total wing area

and wing mean aerodynemic chord, which can be shown to equal %c.

i oHBi £
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Then, c
cras(g - £
Co o - 32 3
C
qs?
Cy, Cy
="\l
and
. _ .1 ii:)
CmcL— 2( c (8)

Values of -CmCL are shown in figure 3.

Again, comparison of this pitching-moment coeffilcient with that
for the two-dimenslonal case is of interest. When reference 6 is used,
the pltching-moment coefficlient gbout the wing aerodynamic center

(which now 1s at the midchord) resulting from a unit 11ft coefficlent
due to flap deflection can be shown to be

i -k
CmCLm= 2(1 < (9)

go that for equal flap chord ratios

Cmgy,

1 (10)

[+

From figure 3 the value of -CmCL ls the smallest for the

largest flap size. Whether a large or small value of CmcL is
desirable depends upon the type of control surface (elevator or
aileron) .
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Rolling~Moment Effectiveness

If the two flaps are deflected egqual smounts in opposite
directions, a rolling moment rather than a-1ift force 1ls produced.
An expresslon is now found for the rolling-moment coefficient
resulting from unit deflections of the flaps in opposite directions.
If the rolling-moment coefficient is based on total wing area and
wing span, the rolling-moment coefficient produced by opposite unit
deflectlions of the flaps is given by

CLSG.SY;E
I
M - (1
Now,
b
b f

yf = ‘é‘ - —2"

therefore,

e _1f; PR\ _1f; - %
P "2 )~ 2 c

and by substitution of equation (2), equation (11) becomes
L ca\2 c

c, =+8ine (.i) - £ (12)
ls B c/. c

Yalues of C'l.aB are given in figure k.

The rolling-moment coefficient for the two-dimenslional case can
be shown to be

=1
C1g _ B<c>w (13)

The rolling-moment effectiveness is often used to determine the
rate of roll as expressed by the wing-tip helix angle pb/2V. In
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order to obtain the value of pb/2V for a unit alleron deflection,
C'Ls 1s divided by the damping coefficient of the wing, deflned as

CZ = . (1’4-)

P

S|

For the trlanguler wing with the Mach lines behind the leading edge,
the damping In roll hes been found in reference 7 to be

Gy = % (15)
and for the two-dimenslonal wing
go that
[+ 2 C.
P—@bs = 12 sin e(—ci) (l - ?f) (17)
and
(%) - .;z(ﬁ) (18)
-] €/

Hinge Moment Due to Control Deflection

Not only the forces and moments produced by the flaps, but also
the forces required to move the flaps, are of concern to the ailrcraft
deslgner. The hinge moment resulting from flap deflection can be
found in much the same fashion as the piltching moment resulting from
flap deflection, if the cembter of pressure on the deflected flap is
remembered to be at the center of area of the flap. If the usual con-
vention is followed in which the hinge-moment ccefficient is based
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on the maximum flap spen along the hinge line and on the square of
the flap root-mean-square chord mesasured perpendicular to the hinge

line, the hinge-moment coefficient produced by a unit flap deflection
can be found.

The flap span along the hinge is seen to be

1

br' = cf sec € (19)

The square of the flap root-meen-square chord perpendicular to the
hinge line can most convenlently be found by taking twlce the area
moment of one flap about its hinge line and dividing by the hinge-
line span of ons flap and is found to be

eg? = 2o stnlc (20)

Using a 1ift coefficlent based on the area of one flap rather than
on wing area is also convenient and, therefore, from equation (1)

4 gin ¢
CL8=_—SB——

The hinge-moment coefficlent for a unit flap deflechlon can now be
wvritten

bece
L gin € ffafq_si ¢

_ B 2 3
hg = B

coB
qed sec e gcfa sinZe f

by cos €

but -



12 NACA TN No. 1600

therefore,

@I

Opg = -7 sin (21)

Values of -ChSB/E are presented in figure 5. The value of chB for
the two-dimensional case (see reference 6) is :

Cig =-«_'§. (22)
-}
therefore, : -
Cn
'cf— = sin ¢ (23)
8

Since this ratio 1s merely -ChSB/E, figure 5 also represents a plot
of equation (23). TFor the present configuration Ch5 1s always less
than for the two-dimensional case, and the value of Cha is
independent of flap slzs.

Hinge Moment Due to Angle of Atbtack

In the analysis thus far, obtaining simple expressions for the
various aerodynamic characteristics has been possible by virtue of
the fact that the deflected flap could be regarded as an isolated
triangulaer wing, the 1lift of whlch could be expressed very simply
without the need of any pressure integration over the flap surface.
This simple concept cannot be used to determine the flap hinge moment
resulting from an angle of attack of the entire wing. Instead, an
integration of the elementary hinge moment over the surface of the
flap must be performed.

Because of the conical flow field produced by the triangular -
wing at an angle of attack, the pressure 1ls constant along any
straight line emsnating from the wing apex, the value of the constant
pressure being a function of the angular distance of the line from
the center line of the wing. The pressure 1is noted to be constant
over the elementary triangulsr area indlcated in figure 6. If now
the differential hinge moment caused by thilse pressure acting over
the flap can be determined, the resulting expression can be integrated
to glve the entire hinge moment of the flap.
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For the present, the net pressure over the top and bottom
surfaces can be writtem as P. If the part of the ilncremental area
contained between the flap hinge line and the wing tralling edge 1s
called A, 1Iif the remainder of the incremental area is called 3B,
and further if r 18 used to denote the distance of the centroid
of an area from an axis, with subscripis to denote the axls and
the ares (see fig. 6 for axes used), an expression for the differential
hinge moment of the flap can be written as

aE = Phrgy, = P[(A + B)ro, o - Broy - (A +B - B)R:I (2k)

The various areas asnd centroids caen be written as follows (see
fig. 6):

A+B=§-dbf
B =2 dbp’
A+3B-B=gadbp —-%abf'
roB-= %E

The following equations can also be wriltten

=2

r c(ein € + ¢ €t
Ca+B 3 ( o8 an )

R = 2(0 - cf) sin €

Expression of equation (24) in terms of +t is convenient where

g=tan € - (25)
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If a nuimber n 18 defined as

nEt_t;%% _ _ (26)

t = O on the wing center line, t = n on the Mach line, and +t =1
on the wing leading edge. The numbers + and n have hers the
game significence as in reference 2. The intersection of the hinge

c
line wilth the wing trailing edge corresponds to t =1 - 2(:5). This

value of t 1s called@ t,. In order to express equation (24) in
terms of +, the following equatlons can be written

dbf = ¢ tan ¢ 4t
and

at

dbo' = 2(c -c ) 86C € —t2
i) g
(t + 1)2

By substitutlon in equation (24) and gimplification, the result
obtained is

2 3
aE - Bim’e 21e? | 2fc - P&b+°Hdt+ c—c ~2dt
co8 € [ 3 ( Gf) ( ('b + 1)2

where P is a fumction of +t. For convenience in notation, the
chord functions are gliven speclal names:

w

F1 %;‘2@'69
3

7 oo
2 =3

F3E%@‘°ﬂ3
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The expression for dJdH +then becomes

2
G = S5 P gt + FpPt dt + Fy 240 (27)
cos € (t + 1)2

An expression for P can be obtained from equations (9), (34%),
and (35) of reference 2. EBquation (9) of reference 2, in the notation
of the present paper, defines a pressure coefficlent as

- 2
cP=PQP°=- gx (28)
v /2
where
jo! pressure acting on one surface of wing
. disturbence velocity in x-direction

If, as before, P 1is the pressure difference between upper and lower
surfaces, then

P = 20Vfy (29)

For the part of the wing shead of the Mach line (t >n), ¢, is
given by equation (34) of reference 2 as .

where w, the vertlical dlsturbance velocity, is &V 1in the present
case. .
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Behind the Mach line (%t <n), equation (35) of reference 2 gives

G ¥ . gsm-l,{f_-_ﬁ>
- 2
2 e i

(The subscripts are added for convenience.) When 1t is remembered
that these different expressions for the potential are necessary
ghead. of and behind the Mach line, equation (27) can be integrated
to glve the total hinge moment of the flap:

e 1
g8in~€ n
H = EpV-EE;;TE Fqy tlw ¢xl at +‘/; ¢32 éf)
n o
1 n
+ Fp f fx b at + . Bryt d:b
n o
1Py, b n Bx, b
+ F + —_——
3 a6+ 12 Jo, (b +1)2

Upon substituting the values of ¢xl and ¢ £ this equation becomes

2 1 1 1
T o- 20V sin“e ¥, at + Fp £ dat +F3f —at
D co8 € 2
V1 - n o to to (£ + 1)

2 n - n
+ boal® _ stn®e Flf sin"lo a4t + Fef t sin~lo at
t _ |t

ﬂﬁm cos € °

LT f’n sin~lo at ' (30)
to (6 + 1) |
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where

112—‘02
c=——-§
1-%

Forming the hinge-moment coefficient per unit angle of atbtack
glves : '

cha=ﬁ@9_

gbg' s

where bp' and Efa are given by equations (19) and (20). Performing
the indicated operatlon, simplifying, and expressing the result
as Cha,B /2 give

2
2\1 - o® to o (£ + 1)

Cn,B 1 1 1
Ze o3 e [Tat e tat+ 0y | ——
2 to 2

. n n
+ ——3—|G; J sin"Yo dt + Gp f t sin"lo at
t -

:t\’l-na _ to

(e]

n -1
+ G3f gin —o dt (31)

where

_Fo _1/cV
G2 cp3 3<Gf
F
G3E_3_,&(_c_-13
Cf3 3cf
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The quantity in the first bracket of eguation (31), which arose from
integrating a constant pressure over the flap, has the constant
value 2/3, so that equation (31) may be simplified to read

Cp B n’
R S — E}l sin"lo at
2 5 2
Vl - n :r\]l - n to
n n ~1
+Gp | temloassay [ SR OLE (32)
o to (t + 1)

This 1s the expression for the general case in which the Mach line
from the wing apex intersects the flap. For the case in which the
Mach line does not intersect the flap, ChaPIE is simply the first

term of equation (32). This fact is easily seen physically by
recalling that .everywhere outside the Mach line the pressure is a
constant dependent only on n. Therefore, if for a given value

of n wvarious sizes of flaps gll lying outside the Mach line arse
consldered, all these flaps wlll have the sams valus for Cha' This

reasoning can be extended further. Consider the flap size to be
increased so that part of the flap now lies inside the Mach lins.
This part of the flap is acted on by a lower pressure than the part
outelde the Mach line, so that the valus of Chm would be expected

to be lower than that for a flap lying wholly outside the Mach line.
A pictoriael representation of the pressure distribution on the wing
is given in figure 7.

The integrals occurring in equation (32) are evaluated in the
appendlx. Values of rChdF/E - have been calculasted and are presented

in figure 8. The value of Cp, for the two-dimensional case (see

reference 6) is

or

w _ 3 (33)
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therefore, figure 8 also represents the ratio of Chm for the
triangular case to Chm for the two-dimensionsl case. 1In all cases
. the value of cha for the present configuration is greater than

the corresponding two-dimensiqnal value. As 1s to be expected from
the qualitative reasoning given before, Cha decreases as the flap

chord Increases and as the Mach 1line moves Tarther behind the
leading edge. (The decrease with increasing flap chord does not
occur, of course, when the flap 1s wholly outside the Mach lins.)

DISCUSSION AND CONCLUDING REMARKS

The efficiency of a control surface may be indicated by the
ratio of ag to Cha. In effect, this ratio represents the 1ift

produced upon application of a glven control force; therefore, the
larger the ratioc, the more efficient the control surface. The
value of the ratio dﬁlcha for the configuration investigated in

the present paper to the corresponding ratio for the two-dimensional
case may be found by using equations (4), (7), and (23); the result
is

o [Cny =2(cf/02= Se/S
ool 19 " S

which shows that for the same ratio of flap area to wing area the
efficiency of the triangulsr control surface on the triangular wing
is equal to that of the two-dimensional wing-flap combination.

A similar comparison can be made of the rate of roll for a
glven control force. By using equations (17), (18), and (23), the
following equation 1s obtained

19
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pb/2V
-5

j?_) - %) g(czf/cc - 52 - ) (s:7 o

For equal flap area ratios and -—cci = %, the rate of roll per unit
hinge-moment coefficient 1s twlce as large for the trlangular case
as for the two-dimensional case. This difference 1s a direct result
of the difference in damping coefficient for the two cases (see
equations (15) and (16)); for equal flap area ratios the
%15/ hg
guantity ——————— 18 unity. In these comparisons the effect
(Cls Cha)

on the hings moment of the asymmetrical angle-of-attack distribution
when the wing is rolling has been neglected.

The values of Chcx, are high compered elther with Chs or with
the two-dimensional values of Chcc' An sppreclable balancing effect

is thus indlicated for cases in which an angle-of-attack response to
control-gurface deflectlion is allowed. If the present arrangement
were used as a horizontal tall, the effect on the stick-free
longlitudinal stability would have to be considered. In reference 8
the ratio of tall lift-curve slope with controls free to that with
controls fixed is shown to be '

Cr, Gy G
Lrros =1 - Ly “hy

c Cr. Cp
L) yoa L"' 5

which becomes for the present case
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chf 5

_Yfree _ ;- _f| B

Cr 5 |%a
%rixed

This ratio is a measure of the destabllizing effect caused by freeing

the controls and may be used as indicated in reference 8 to estimate
the resulting shift in neutral point.

Langley Memorigal Aeronautical Laboratory
National Advisory Committee for Asronautics
Langley Fleld, Va., March 23, 1948
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APPENDTX
INTEGRATTIONS FOR HINGE MOMENT DUE TO ANGLE OF ATTACK

Equation (32) contains three integrals, the first of which is

n
' J' sin~lo 4t (A1)
To
where
2 _ L2
o = ' 'b2
1l-t

This expression may be Iintegrated by paxts to give

2
fsin'lcr it = t sin" Yo + (1 - n2)1/2 b db (42)

(1 - t2) (n2 - t2)1/2

The integral in equation (A2) can be evaluated by making the
gubstitution +t = n sin 6. The integral then becomes

f 2 at , =fn2 sin®0 a6 (43)
(l - tE)( 2 2)1 2 1 - n° eine

This integral can be simplified by divislon and by separation into
partlal fractions which glves

n® sin®e 46 _ @ L j___ 4 (ak
f—ngsi 9+l fd'e+ fl+nsin6 2fl-nsin6 (a%)
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The first integral on the right-hand side of equation (Ak) is simply

- fdﬁ = —sin'lﬁ (45)
The second and third integrals can be evaluated (reference 9,
equation (298)) to give
f do e ? -V -2,
1+nsin?d 1-n° t\,ll—n2 Vl-n2
s (86)
f at e 2 4 ifn-Vp? -2 __ n
L-nslns \/l-n2 'l:\/l-n.2 \ll-n2
Expression (Al) then becomes
n 1 (2 C g2 12 - 2 2\1/2 -1 ¢
sin 2~ % gt = |t sin n——-(l—n) gin — X
g 1 - 2 1-+t2 n
s tan-l(n-Ve2 - t2 . n
t\1-02 \1-n2
- - 2 _ 2 n
t\ll - n2 \ll - n/ |t

The second integral occurring in equation (32) is

Q

f % ¢ sinYo at (A8)
%
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vhere again

o 2. 2 -
U1-t2

This equation can be Integrated in much the same manner as the first
integral. ¥First, an integration by parts gives

- 2 o (- o2)Y2 £3_at
f‘b sin”lo at = 2~ sin"lo + . (1 - t2)<n2 - te)lfz (49)

The integral in equation (A9) cen be evaluated by making the
substitutlon +t = n sin 6 +which glives

3 at ) f 3 sind0 40 (A10)
As before, divislon and separation into partial fractions give
3 3
n- sin”9 48 - _ 1 ae
fl_nesinae‘ /‘nsinede 2\[’1+nsin6

/8 .
* 2L/71 - n sin @ ) (All)

The second two integrals on the right-hand side of equation (All)
have already been svaluated (equation (A6)). The first integral is

- Jpn 8in 6 @ = n cos 6 = \Jn© - t2 (A12)
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Equation (A8) then becomes

n - 2 . 2 2 - 2 _ .2
tsinl.n__i.dt._.[_t_sinl.@__t
& 2 1-+°

(1 - &)o(2 - D)2
*+ 2

_\/2_ 2
tan"ln n 'b+ n

t\1 -0 \1-n2

tan~l{ 2 - \jn2 - 2 - n n (a13)
s\l -n2  \1- o2

'
] [

N[

The last integral to’'be evaluated 1s

f % sin~ts ax (ATH)
%

o (t+1)2

The same general procedure used for the previous two integrals can be
employed. The first integration by parts gives

-1 -1
sin"o at _ _sin"Ys _ (, _ _g\1/2 t_dt
f =t - (- =) f A (a15)

(t + 1) ) (l+t)(l—t2)(n2

Substitution of t =n sin @ glves
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f ' t a4 =f n sin 6 46 (x16)
s+ - D2 - @) J Qrnsme®e-nsme) |

Separating into partial fractions gives

n gl 6 49 - - a6
(L+nsin )21l -nsing) 2,/ (1L+usino)?
i) 48 _ 1 [__488
+hfl+nain6+hfl-nsine (a17)

The laat two :‘Lnte%rals have been evaluated (eq.uation (46)). With the ald of reference 9,
equations (318), (308), and (300), the first integral can be evaluated to glve
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